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Cryptosystems that have potential to resist the future quantum
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Code-based cryptography
Hash-based crytograohy

|
|
m Lattice cryptography
|

Multivariate cryptography
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What is a MPKC?

m Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions
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What is a MPKC?

m Multivariate Public Key Cryptosystems
- Cryptosystems with public keys as a set of multivariate
functions

m Public key: G is a map from k" to k™:
G(x1,.-yxn) = (g1(x1,- - s Xn)y- -, 8m(X1, .-y Xn));

G:L2OFOL1,

over k, a small finite field like GF(28)
F: central map and F~! easy to compute.
L1 and Ly: "locks" on the secret of F.

m Private key: a way to compute G~ via the map
decomposition or factoring.

Gl=LtoF oLt
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a MPKC signature system

m Signing (a hash of) a document:
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a MPKC signature system

m Signing (a hash of) a document:
(X1, , %) € G Xy1, ..\ ym)

G_l(yl, ceyYm) = L;l oF 1o Lfl(yl, ceesYm)-

?

m Verifying: (y1,...,ym) = G(x1,...,Xn)-
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Theoretical Foundation

m Direct attack is to solve the set of equations:

G(M) = G(X]_,...,Xn) = (}/{, "'>yr/n)'
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Theoretical Foundation

m Direct attack is to solve the set of equations:

G(M) = G(X]_,...,Xn) = (}/{, "'7yr/n)'

m - Solving a set of n randomly chosen equations (nonlinear)
with n variables is NP-hard, though this does not necessarily
ensure the security of the systems.
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Quadratic Constructions

m 1) Efficiency considerations lead to mainly quadratic
constructions.

1(x, Z QiiXiXj + Z Biixi + 1.
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Quadratic Constructions

m 1) Efficiency considerations lead to mainly quadratic
constructions.

1(x, Z QiiXiXj + Z Biixi + 1.

m 2) Mathematical structure consideration: Any set of high
degree polynomial equations can be reduced to a set of
quadratic equations.

x1xox3 = 1,
is equivalent to
X4 = X1X2
xzx3 = 1.
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The view from the history of Mathematics

m RSA — Number Theory — the 18th century mathematics

m ECC - Theory of Elliptic Curves — the 19th century
mathematics

m Multivariate Public key cryptosystem — Algebraic Geometry —
the 20th century mathematics

Algebraic Geometry — Theory of Polynomial Rings

Humans have been trying to solve polynomial equations for
thousands of years.
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A quick historic overview

m Single variable quadratic equation — Babylonian around 1800
to 1600 BC
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A quick historic overview

m Single variable quadratic equation — Babylonian around 1800
to 1600 BC

Tartaglia ¢ ,

m Multivariate system— 1964-1965
Buchberger : Groobner Basis
Hironaka: Normal basis

10 | 33



The hardness of the problem

m Single variable case — Galois's work.

SN X
Newton method — continuous system
Berlekamp's algorithm — finite field and low degree
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The hardness of the problem

m Single variable case — Galois's work.

Newton method — continuous system
Berlekamp's algorithm — finite field and low degree

m Multivariate case: NP- hardness of the generic systems.
Numerical solvers — continuous systems
Finite field case
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Historical Development

m Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc
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Historical Development

m Early attempts by Diffie, Fell, Imai, Ong, Matsumoto, Schnorr,
Shamir, Tsujii, etc

m Fast development in the late 1990s.
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How to construct G?

m The unbalanced Qil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.
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How to construct G?

m The unbalanced Qil-Vinegar scheme by Kipnis, Patarin and
Goubin 1999.

m G=Fol.
F: nonlinear, easy to compute F~ 1.
L: invertible linear, to hide the structure of F.
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How to construct G?

m More efficient construction - Multi-layer UOV — Rainbow by
Ding and Schmidt 2005.
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How to construct G?

m More efficient construction - Multi-layer UOV — Rainbow by
Ding and Schmidt 2005.

mG=1LroFol;.
F: Multilayer UOV, easy to compute F~ 1,
L1, Lo: invertible linear, to hide the structure of F.
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Unbalanced Oil-vinegar (uov) schemes
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Unbalanced Oil-vinegar (uov) schemes

B F = (X1, X0, X], oes X))y -+ 5 fo(X1, oy Xoy X, ey XU))-

m Each f; is an Qil-Vinegar polynomial:
(X150 X0y X1y X0) = D axixi+ Y byxix+>  cixi+Y_ dixi+e

Oil variables: xi, ..., xo.

/

Vinegar variables: xi, ..., .
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How to invert F?

m Randomly assign values to Vinegar variables:

/ !/
ﬁ(X17'7XO7 X1y Xy ):
~——

fix the values

E a,,-jx,-xf + E b/,JX,IXJ/ + Z CliXi + E d/,-X,{ + €.

17 | 33



How to invert F?

m Randomly assign values to Vinegar variables:

/ !/
ﬁ(X17'7XO7 X1y Xy ):
——

fix the values

E a,,-jx,-xf =+ E b/,JX,IXJ/ =+ Z CliXi + E d/,-X,{ + €.

ﬂ(xla '7XO7X:/17 '7X\l/) =

/ ! ! /
D aipixt+ > bipxx Y aixi+ Y dixi + e,

m F: linear in Qil variables: x1, .., x,.

— F: easy to invert.
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The F for Rainbow

m Layer 1:
Vinegar: xq, ., xy,
Oil: Xy, 41 -, Xvy+0;

(A, foy)
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The F for Rainbow

m Layer 1:
Vinegar: xq, ., xy,
Oil: Xy, 41 -, Xvy+0;

(A, foy)

m Layer 2:
Vinegar: xi, .. %y, . Xy 1, X 10, Oill Xy, 40,415 -5 Xvy 401400

(f01+17 ) f01+02)

F = (ﬂ7 .y f015 f01+15 a3 f01+02)’
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The F~! for Rainbow

m Layer 1:
Assign values to Vinegar: xi, ., x,, in

(f;la ooy f01) = (yla "7y01)7

solve and find the value of Oil: x,, 11, ., Xy, 40,
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The F~! for Rainbow

m Layer 1:
Assign values to Vinegar: xi, ., x,, in

(f;la ooy f01) = (yla "7y01)7
solve and find the value of Oil: x,, 11, ., Xy, 10,

m Layer 2:
Plug in values of
Vinegar: x1,., Xvy, Xvy 4+1, -, Xvy+o01
in
(f01+17 i) f01+02) = (y01+17 "7y01+02)

find the values of Oil: Xy, 10,41, -5 Xvy+01+00
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The F~! for Rainbow

m Layer 1:
Assign values to Vinegar: xi, ., x,, in

(f;la ooy f01) = (yla "7y01)7
solve and find the value of Oil: x,, 11, ., Xy, 10,

m Layer 2:
Plug in values of
Vinegar: X1, ., Xy, s Xvy+1, -s Xvg+0;
in

(f01+17 “ety f01+02) = (y01+17 "7y01+02)
find the values of Oil: Xy, 10,41, -5 Xvy+01+00
m This givs us F~ (i, .., Yoy +0s°
(X0s +es Xug s ooy Xog vy s ooy Xoy+optvy )-
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Security analysis

Systematic theoretical and experimental analysis

m Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.

m Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.

m MinRank attack on Rainbow:
Given a set of matrix My, ..M, find a non-trivial > a;M; with
lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.

m Natural Side channel attack resistance.
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Security analysis

Systematic theoretical and experimental analysis

m Direct attack does not work against best existing polynomial
solving algorithms
The cpomplexity bahves just like a random system.

m Finding keys again becomes a problem of solving polynomial
equations
Here we need to be careful with choice of parameters.

m MinRank attack on Rainbow:
Given a set of matrix My, ..M, find a non-trivial > a;M; with
lowest rank.
MinRank is a hard problem and attack it is reduced to solve
multivariate polynomial equations again.

m Natural Side channel attack resistance.

No weakness yet being found in the design.
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Parameters and Performance

m Rainbow(17,13,13) over GF(28): Signature size: 43 bytes,
private key: 19.1KB, public key 25.1KB.

m Rainbow(26,16,17) over GF(28): Signature size: 59 bytes ,
private key 45.0KB, public key 59.0KB.

m Rainbow(36,21,22) over GF(28): Signature size: 79 bytes,
private key 101.5KB, public key 136.1KB.
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Parameters and Performance

m High efficiency — solving linear equations.
IC for Rainbow: 804 cycles. ( ASAP 2008)
FPGA implementation at Bochum (CHES 2009) — Beat ECC
in area and speed.
Faster parallel implementation 200 cycles — (PQC 2011)
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Parameters and Performance

m High efficiency — solving linear equations.
IC for Rainbow: 804 cycles. ( ASAP 2008)
FPGA implementation at Bochum (CHES 2009) — Beat ECC
in area and speed.
Faster parallel implementation 200 cycles — (PQC 2011)

m Relative large public key
Further optimizations — Petzoldt, Buchmann etc. at TU
Darmstadt

m Highly efficient compact signature
Small devices — RFID, Sensors.
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Another choice — HFEV-Minus — Quartz

m The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: k" can be identified as a Irage field K = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail

FX) =3 apX7+7 + 3" bixe + C..
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Another choice — HFEV-Minus — Quartz

m The basic design: Hidden field equation system (HFE) with
Vinegar variables and Minus modification designed in 1999

HFE: k" can be identified as a Irage field K = k[x]/g(x),
where g(x) an ireeducible polynomial.

We use a olynomail
FX) =3 apX7+7 + 3" bixe + C..

m Very short signature ( 107 bits) but slow.

m No weakness yet found.

m New designs by Ding, Petzoldt, Tao, Yang. very efficient
(more than 1000 times faster with a 92 bits signature, or
170bits for post-quantum signature.)

m Solid theoretical and experimental security analysis.
Degree of regularity, solving degree, degeneration degree
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The basic design

m The public key is given as:

G(Xl, ...,Xn) = (Gl(Xl, ...,Xn)7 cony Gm(Xl, ...,Xn)) = L2 oFo L1.

G; are multivariate polynomials over a finite field, which are
mostly degree 2

25 | 33



The basic design

m The public key is given as:
G(Xl, ...,Xn) = (Gl(Xl, ...,Xn)7 veuy Gm(Xl, ...,Xn)) = L2 oFo L1.

G; are multivariate polynomials over a finite field, which are
mostly degree 2

m Any plaintext M = (xi, ..., x},) is encrypted via polynomial
evaluation:

G(M) = G(x, -, xp) = (V15 -+ Yin)-

25 | 33



The basic design

m The public key is given as:
G(Xl, ...,Xn) = (Gl(Xl, ...,Xn)7 veuy Gm(Xl, ...,Xn)) = L2 oFo L1.

G; are multivariate polynomials over a finite field, which are
mostly degree 2

m Any plaintext M = (xi, ..., x},) is encrypted via polynomial
evaluation:
G(M) = G(X{, e, X)) = (V15 ooy Vio)-

m To decrypt the ciphertext (yj,...,y}), one needs to know a
secret (the secret key) to compute the inverse map G~! to
find the plaintext (x],...,x}) = G=1(y{, .., ¥}).
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Toy example

m We use the finite field k = GF[2]/(x? + x + 1) with 22
elements.
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Toy example

m We use the finite field k = GF[2]/(x? + x + 1) with 22
elements.

m We denote the elements of the field by the set {0, 1,2, 3} to
simplify the notation.

Here O represents the 0 in k, 1 for 1, 2 for x, and 3 for 1 + x.
In thiscase, I +3=2and 2x3=1.
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A toy example

Go(x1, x2,x3) = 1+ x0+ 2x0%0 + 3x2 + 3x1x0 + X3
Gi(x1,x2,x3) = 14+ 3x0+2x1+x + Xg + xox1 + 3xpx2 + X12
Ga(x1, x2, x3) = 3xp + xg + 3’x12 + x1x0 + 3’x22
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Gi(x1,x2,x3) = 14+ 3x0+2x1+x + Xg + xox1 + 3xpx2 + X12

Ga(x1, x2, x3) = 3xp + xg + 3’x12 + x1x0 + 3X22

m For example, if the plaintext is: xg = 1, x;1 = 2, xo = 3, then
we can plug into Gi, Gz and G3 to get the ciphertext yp = 0,

y1:0,y2:1.
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A toy example

n
Go(x1, x2,x3) = 1+ x0+ 2x0%0 + 3x2 + 3x1x0 + X3
Gi(x1,x2,x3) = 14+ 3x0+2x1+x + Xg + xox1 + 3xpx2 + X12
Ga(x1, x2, x3) = 3xp + xg + 3’x12 + x1x0 + 3X22

m For example, if the plaintext is: xg = 1, x;1 = 2, xo = 3, then
we can plug into Gi, Gz and G3 to get the ciphertext yp = 0,
=0 y=1

m This is a bijective map and we can invert it easily. This
example is based on the Matsumoto-Imai cryptosystem.
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The best designs

m Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.
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The best designs

Internal perturbation of HFE and perturbed MI with Plus.
Designed by Ding, Schmidt.

But relatively slow and large key size.

New designs — Simple matrix method by Ding and Tao 2013.

m The efficiency is now comparable with with the signature
scheme.

28 | 33
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Main attacks

m Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.
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Main attacks

m Albegraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
Degree of regularity, degeneration degree, solving degree.

m MinRank Problem:
Given a set of matrix My, ..M, find the nonetrivial minimum
rank of ay My + aoM> + ..., anM,,.
This is again coverted in to a polynomial solving problem.

m Hidden symmetry: we can handle these problems easily by

eliminating those symmetries with mathematical proofs. ( D.
Smith, R. Perlner)
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Algebraic attacks

m Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
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Algebraic attacks

m Algebraic attacks: attack a cryptosystem via a problem solving
a set of polynomial equations.
m Polynomial solving algorithms: F4, Mutant XL, SAT solvers etc

m We have a solid understanding of the complexity of those
attacks, where our theoretical analysis matches precisely the
experimental analysis.

Degeneration degree, solving degree ( degree of regualrity)
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Summary

m MPKC provide the best signature designs in terms of
computing performance and signature size.
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Summary

m MPKC provide the best signature designs in terms of
computing performance and signature size.

m The security analysis has solid theoretical support and
systematic experimental support.

m Drawback: relative large key sizes (10s KB) but can be
substantially improved with further optimization

m We have solid but not so efficient encryption schemes. New
designs are catching up.
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Thank you
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